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A novel primitive model is proposed for the hydrodynamic behaviour of an isolated 
dissolved polymer molecule in a laminar shear flow. The model, in which inertial 
effects are neglected, allows for rotation and partial stretching of the molcule, 
but not for bending. Dilute solutions of flexible long-chain polymers have been 
experimentally observed to exhibit periodic velocity fluctuations distinct from 
turbulence over a broad frequency range when flowed in high-shear-rate water- table 
and pipe configurations. In  these experiments, the frequency of the fluctuations does 
not increase with increasing shear rate; rather, it is lowest in the regions of the flow 
where the shear is the highest. A manifestation of viscous shear thickening has also 
been observed in these laminar flows. The proposed polymer representation appears 
capable of accounting for the salient features of these flows with adjustment of a 
single dimensionless parameter, a ratio of polymer-spring and solvent-viscosity 
forces. 

1. Introduction 
Periodic fluctuations in the streamwise component of velocity have been observed 

in a series of high-shear-rate laminar water-table and pipe flows of dilute (3-18 
p.p.m.) solutions of the flexible long-chain polymer polyethylene oxide (PEO). As 
reported elsewhere (Abernathy et al. 1980; Abernathy & He 1984, 1987), these 
fluctuations disappear if either the polymer concentration or the shear rate is too low, 
but are reproducibly excited at sufficiently high concentration and sheer. The power 
spectrum of the fluctuations is distinct from that of turbulence, which may be 
triggered and may coexist at  the same flow conditions. 

The pronounced structure in the spectrum of the velocity, which the model is 
advanced to explain, has been observed in two different flow geometries using three 
different laser-Doppler velocimetry (LDV) techniques. Results from two of these 
investigations are shown in figures 1 and 2. The spectrum is most narrowly peaked 
in the LDV measurements in a water-table flow, as shown in figure 1, which is from 
Abernathy et al. (1980). The experimental technique employed selective seeding of 
the flow with micron-size hydrogen bubbles generated electrolytically upstream of 
the scattering volume by a wire held spanwise in the flow. The effective scattering 
volume was the intersection of the plane of the bubbles with the needle-shaped 
volume defined by the crossed laser beams, which was oriented with its long axis 
normal to the wall, presenting a small cross-section to the plane of the bubbles. 

As the bubble-generating wire was traversed in the direction normal to the wall, 
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FIGURE 1. Streamwise velocity spectra for a polymer-induced fluctuation water-table flow at three 
transverse positions in the layer (from Abernathy et al. 1980). The axes are frequency times power 
vs. log frequency. For clarity the spectra at y+ = 19 and 23 are offset vertically by 0.2 and 0.4, 
respectively. The flow parameters are u, = 3.43 cme s-l, v = 0.00905 cme s-l, Re = 1630. The 
polymer concentration is 18 p.p.m. 
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FIQURE 2. Streamwise velocity spectra for a polymer-induced fluctuation pipe flow at three radii 
(from Abernathy & He 1984). The axes are aa in figure 1, with the spectra at y+ = 19 and 23 offset 
by 0.4 and 0.8, respectively. Re = 3470 and the polymer concentration is 10 p.p.m. 
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the velocity and resulting spectrum was measured at different elevations in the flow. 
The centre frequency of the peak in the spectrum is lowest near the wall where the 
shear rate is highest, and higher away from the wall where the shear rate is lower. 
Further from the wall, at  the lowest shear rates, the spectrum (not shown) has no 
frequency structure. The streamwise velocity spectrum in laminar flows a t  low shear 
rates or at low polymer concentrations (or both) is a constant, independent of 
frequency. 

These measurements in two-dimensional water-table flows with a free surface were 
confirmed in an independent series of measurements in pipe flows, as shown in 
figure 2, which is from Abernathy & He (1984). In these experiments, a smaller 
than conventional (0.2 mm x 0.025 mm dia.) laser scattering volume was used with its 
long axis oriented along the 2.5 mm pipe radius. The flow was uniformly seeded with 
milk, and the scattering volume was optically traversed in the direction normal to 
the wall. With the long axis of the scattering volume oriented along the shear-rate 
gradient the velocity spectra of figure 2 were, as expected, broader than those of 
figure 1 ; still, the centre frequency of the peaks increases slightly with distance away 
from the wall towards the lower shear-rate core of the flow. 

The presence of peaks in the spectra of figures 1 and 2 implies coherence of the 
velocity fluctuations over lengths on the order of centimetres in the flow direction, 
given the frequencies and the mean flow rates. With the LDV equipment available, 
i t  was not possible to construct two-point velocity correlations ; however, inferences 
about correlations in the other directions can be made from available data. The 
frequency variation normal to the wall explicitly shown in the figures implies little, 
if any, correlation in this direction. Decreased correlation in the other transverse 
direction can be inferred from additional water-table experiments using uniform 
seeding in which the scattering volume was located with its long axis oriented 
spanwise in the flow. The spectrum of the velocity signal at y+ = 14 was broadly 
distributed from 30 to 200 Hz, as opposed to the fairly narrow peak about 60 Hz 
shown at y+ = 15 in figure 1. Such a spectrum is consistent with weak spanwise phase 
correlation of the velocity signal over the 1.6 mm length of the scattering volume 
used in these experiments. 

Another interesting feature of the dilute-polymer laminar flows is the shear- 
thickening phenomenon reported in Abernathy & He (1984, 1987). In the pipe flows 
described therein, the friction factor exhibited a slight increase with increasing 
Reynolds number, implying an increase of viscosity with shear rate, a feature which 
cannot be explained with non-deforming polymers. 

In a preliminary effort to account for these phenomena, a hybrid ellipsoid- 
dumbbell polymer model was advanced in Abernathy et al. (1980). This fully 
deterministic model containing a single time constant has been further developed, 
and shows promise in accounting for three of the most significant features observed 
in high-strain-rate polymer flows, namely 

(i) the dependence of the fluctuation frequency on the local shear rate, 
(ii) the dependence of an estimate of the effective viscosity of the mixture on the 

(iii) the local streamwise coherence. 
The hybrid model is introduced in $2. Sections 3,4  and 5 are devoted, respectively, 

to the three points listed above. We conclude in $6 with a summary and a discussion 
of the outstanding questions. 

local shear rate, and 
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2. Three rheological bodies 
Because of the uncertainty in defining the shape of a macromolecule such as 

a polymer, protein, or blood cell in solution, and the difficulty of solving the 
hydrodynamic equations in the domain exterior to such irregular bodies, simple 
bodies such as ellipsoids, dumbbells, rods and the like have often been employed in 
rheological contexts to generate intuition and to account qualitatively for the 
behaviour of the macromolecule-fluid system. In this section, the features of two 
classical rheological bodies, the rigid ellipsoid and the bead-and-spring dumbbell, are 
reviewed and combined to obtain a behaviour which resembles that deduced for 
flexible long-chain polymer coils on the basis of the experimental observations cited 
above, in a way that no other comparably simple model is likely to be able to do. 

2.1. The rigid ellipsoid 
The frequency of the experimentally observed periodic fluctuations in the streamwise 
velocity component of simple shear flows of dilute polymer solutions in water-table 
and pipe geometries is suggestive of the frequency of the tumbling of an isolated 
prolate ellipsoid. As derived in Jeffery (1922), a rigid prolate ellipsoid of revolution 
with aspect ratio r (defined as a/b ,  where a and b are the semi-major and semi-minor 
axes, respectively) placed in a low-Reynolds-number shear flow with vorticity K ,  with 
its long axis in the plane normal to the axis of vorticity, rotates with an angular 
velocity . r2 cos2q5+sin2q5 

# = K  
r2+1 ’ 

where # is the angle between the axis normal to the flow and the major axis of the 
ellipsoid : see figure 3 for a defining sketch. (A simple shear flow is a superposition of 
a pure straining motion in a plane, with zero rate of expansion, and a rigid rotation 
normal to the plane. In the coordinate system shown, the only non-zero components 
of the strain and rotation tensors are equal to half of the shear rate, and these terms 
will be used interchangeably herein in describing the magnitude of K . )  The key 
assumption made in obtaining (1) consists in setting the net torque on the ellipsoid 
due to the fluid force to zero. The rotation is rapid in the vicinity of q5 = 0, where 
the ellipsoid is nearly perpendicular to the flow, and slows down in the vicinity of 
4 = in, where the ellipsoid is nearly aligned with the flow. Owing to the symmetry 
and resulting indistinguishability of the two ends of the ellipsoid, the rotation has 
a period of just R. The frequency fu at which flips of R rad are executed (the 
experimentally measurable frequency) is (Jeffery 1922) 

This frequency increases linearly with the shear rate, but decreases with increasing 
aspect ratio. Since the experimental streamwise velocity fluctuation frequency 
decreases or is nearly stationary with increasing shear rate, the rigid ellipsoid model 
alone seems incapable of a useful description. However, (2) suggests that a model 
that is capable of deforming to successively larger aspect ratios with increasing shear 
rate might prove useful. 

2.2. The bead-and-spring dumbbell 
A simple bead-and-spring dumbbell model of a polymer, of the type initially 
considered in Bird et al. (1977) and as sketched in figure 4(a), provides a mechanism 
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FIGURE 3. Ellipsoid of revolution with aspect ratio a/b  rotating in the (r, y)-plane of the 
uniform shear flow u = KY, w = w = 0. 

(b) 
FIQURE 4. (a) Bead-and-spring dumbbell rotating and deforming in the (5, y)-plane of the uniform 
shear flow u = KY, v = w = 0. (b)  Instantaneous balance of forces on the sphere in the first 
quadrant. 

17 FLM 185 
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for deformation. Two spheres of radius b are connected at  their centres by a non- 
bendable spring of semi-elongation i$b, where 5 is a dimensionless length. The spring 
itself does not interact with the fluid, and the couples on the individual spheres (due 
to the local shear) are at first ignored, leaving only the net force acting through the 
centre of each sphere to be taken into account. The sum of the instantaneous drag 
forces and spring forces on the spheres is set to zero to derive the equations of motion 
for the body, which is consistent with the non-inertial limit used in deriving (1). 

The hydrodynamical force on one of the spheres because of its motion with velocity 
v relative to that of the fluid U, assuming the validity of the Stokes drag formulation 
and ignoring the presence of the other sphere, is 67rpb(U-v). In the local ( i $ , # ) -  
c9ordinate svstem, the ambient velocity U a t  the centre of the sphere is $Kb$ cos # = 
[&b$ COB # sin # + &b( cos2 $1 and the velocity v of the centre of the sphere itself 
is [ [bg+&[d] .  In  terms of the variables of the bead-and-spring model, the 
hydrodynamical force becomes 

Ii;luid = 67cpb[&d[ cos # sin # - b i )  + qi(Kb6 cos' # - b@)] .  (3) 

Since the counterbalancing spring force is purely radial (see figure 4 b), the angular 
component of the fluid force must vanish, yielding 

(b = K COS2#. (4) 
Note that this is the same as the equation governing the rotation of a rigid ellipsoid 
(l), in the limit as the aspect ratio r of the ellipsoid approaches infinity. However, 
unlike the rotating finite-aspect-ratio ellipsoid, the dumbbell ultimately becomes 
aligned with the shear flow and ceases to rotate further. 

Let the magnitude of the spring force be written as the product of a Hookean 
constant H times the displacement of the end of the spring from some non-negative 
equilibrium extension gEQ so that 

The sum of the radial forces in (3) and ( 5 )  must be zero, yielding the equation for the 
deformation : 

Since the bead-and-spring model described by (4) and (6) does not produce periodic 
rotations, it alone is unsuitable for modelling the experimentally observed behaviour 
of the polymers. In other contexts (e.g. chapter 10 of Bird et al. 1977), Brownian 
motion is often invoked to provide a mechanism for tipping the bead-and-spring 
model out of alignment with the flow, leading to a stochastic model for the behaviour 
of polymers in a simple shear. 

2.3. The hybrid model 
Neither the rigid-ellipsoid nor the dumbbell models alone are capable of explaining 
the periodic fluctuations that have been observed. However, the combination of ( 1 )  
and (6) gives a promising model, for present purposes, which possesses both 
rotational and deformational behaviour. Objections may be raised to the assumption, 
inherent in (l) ,  that the major axis of the ellipsoid remains in the plane normal to the 
vortex lines as it tumbles. As speculated by Jeffery and confirmed experimentally 
by Taylor (1923), a rigid prolate ellipsoid of revolution will precess in its orbits until 
eventually the minimum-energy configuration is reached in which its major axis is 
parallel to the vortex lines. However, at small Reynolds numbers the number of 
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p- rb = a -_I 

FIGURE 5. The hybrid polymer model, regarded aa an ellipsoid for calculating the rotation, and 
aa a bead-and-spring dumbbell for calculating the deformation. 

orbits required for the completion of this precession becomes large, a counter- 
intuitive effect in which increased viscosity leads to slower damping of oscillations. 
The slight tendency toward alignment with the vortex lines is overbalanced during 
each flip of the hybrid body by the strong deformational forces tending to pull the 
ends of the body out in the direction of the flow. 

To the end of relating the r of (1) to the 5 of (6), we view the polymer as 
simultaneously having a dual nature, as sketched in figure 5, where T = E+ 1. The 
actual effective hydrodynamical shape of the polymer in solution is probably some 
compromise of the ellipsoid and dumbbell shapes, and is of course considerably less 
symmetrical than either, in general. However, we shall assume that it is a prolate 
body of revolution and use whichever of the extreme idealized shapes (ellipsoid or 
dumbbell) is momentarily convenient. This machination is neither as inconsistent as 
it  may first appear, nor strictly necessary in the kinematical analysis to follow. 
Bretherton (1962) has shown that almost any physically realizable rigid body of 
revolution rotates like an equivalent ellipsoid of revolution when placed in a simple 
shear flow. Thus, such a body obeys (1) for some T ,  provided its axis of symmetry lies 
initially in the plane normal to the vortex lines. The equivalent aspect ratio T is 
difficult to compute for general bodies, but has been given for the case of a rigid 
dumbbell comprised of two equal spheres by Kim & Mifflin (1985).t Their analysis 
for the interaction of two spheres in low-Reynolds-number flow does not ignore the 
couples on the individual spheres as we did above. A plot of their numerical results, 
obtained using the boundary collocation technique and converged to beyond the 
resolution of the plotter is given in figure 6, along with the line r = 5+ 1. It is evident 
that, within the range of E which is of interest (which turns out to be roughly 
1 < < 5), the inaccuracy entailed by using (1) for the rotation of the polymer, with 
the slightly underestimated equivalent aspect ratio r = E+ 1, is of shall consequence 
compared with the common idealization, invoked for convenience herein, that 
polymers may be modelled by some body of revolution to begin with. 

At this point, it is desirable to mathematically restate the hybrid polymer model 
embodied in (1) and (6), slightly generalizing and tidying it. The radial component 
of the fluid force on each sphere in (3) was computed ignoring the presence of the 
other. Since the spheres may be quite close (indeed, they may spend part of the cycle 
less than a diameter apart), we correct for this by multiplying the Stokes drag by a 

t The authors are grateful to a reviewer for calling their attention to the work of Kim & Mifflin, 
which shows that the link between the ellipsoid aspect ratio and the dumbbell sphere separation, 
which waa somewhat arbitrary in the original version, is quantitatively well-founded. 

17-2 
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FIQURE 6. Aspect ratio of the equivalent prolate ellipsoid for the rotation of a rigid dumbbell in a 
simple shear flow (solid curve), and the linear approximation employed herein (dashed curve), as 
functions of the semi-separation of the sphere centres. 

factor /3 which is unity at  infinite separation and approaches 00 as the spheres touch, 
effectively preventing interpenetration. Brenner (1961) has calculated this /3 in the 
Stokes flow limit, as a function of the dimensionless separation of the centres of the 
spheres. With 6 as defined above, and with a = cosh-'f, 

4 cosh2 (n +a) a + (2n + 1)2 sinh2 a 
2 sinh (2n + 1 ) a - (2n + 1) sinh 2a 

This function is graphed in figure 7. The departure of B( f )  from the simple 
assumption that p = 1 is significant within the range of 6 which is of interest, so we 
incorporate this refinement into the model. 

The linear spring law (5 )  is unlikely to represent a real polymer over wide ranges 
of deformations. It is desirable to incorporate a softening of the spring at  moderate 
expansions beyond the equilibrium displacement and a hardening of the spring at 
very large expansions. The softening may be interpreted either as accounting for the 
reduced number of monomer links in the centre of the polymer holding its extreme 
ends together when it becomes partially stretched out, or as accounting for an 
increase in the effective drag on the ends of the polymer due to their relatively 
greater surface area when they are pulled out, or some combined effect. The 
hardening is intended to allow for a sharp upper limit on the extension which the 
polymer can withstand (without breaking). In place of ( 5 )  we write, in general 

where a simple choice of the dimensionless g(5) is 
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FIGURE 7. The Stokes drag correction factor B for the relative motion along the line of centres 
of two spheres, aa a function of the semi-separation of the sphere centres. 

where p > 0. Apart from the factor in braces, the spring so defined is known as a 
Fraenkel-Warner spring, and EW is called the Warner constant (Bird et al. 1977). The 
authors have no commitment to the particular form of the spring law in (9). While 
it possesses the qualitative behaviour described above in an algebraically simple 
form, it could be replaced by any number of alternatives. 

Finally, we non-dimensionalize (1) and (6) by taking 1 / ~  as the unit of time. The 
result is the following coupled set of ordinary differential equations: 

(10a, b )  
(1) - - ([(E+1)' cos2 9 + sina 9]/[(5+ l)a + 13 

5 sin 9 cos 9 - CS(5)/B(5) 
where C ,  the lone free parameter in the system apart from the functional form of 9, 
is the dimensionless number H / 6 1 t p b ~ ,  a ratio of the spring constant to the viscous 
drag force on the spheres. 

In its undeformed or equilibrium state, the aspect ratio of the prolate ellipsoidal 
dissolved polymer is assumed to be approximately 3. The approximate equilibrium 
value of rEQ = 3 (or 5EQ = 2) is selected in order to put the fluctuation frequency 
versus shear rate curve in the experimental region of about 100 Hz for a shear rate 
of 1000 s-', and is obtained by solving (2) for r .  When TEQ = 3 was first chosen in 
Abernathy et al. (1980), no argument for it was given apart from the magnitude of 
the observed frequency. Subsequently, the authors have become aware of the 
extensive literature on the simulation of polymeric structures by means of three- 
dimensional self-avoiding random walks (e.g. S6lc & Stockmayer 1971 ; S6lc 1971 ; 
Rubin & Mazur 1975; Rubin, Mazur & Weiss 1976; Rubin & Mazur 1977), which 
confirms the validity of an aspect ratio of approximately 3 to 1. It should be noted, 
however, that the equilibrium shapes of such simulations are less symmetrical than 
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ellipsoids of revolution. Rubin & Mazur (1975) estimate, for instance, that the 
principal axes of the equivalent ellipsoid for a polymer chain generated as a self- 
avoiding random walk on a cubic lattice, in the limit of infinitely many links, are in 
the proportion 3.05 : 1.77 : 1.00. 

3. Periodic limit-cycle behaviour 
The hybrid model has been studied quantitatively by numerically integrating 

the equations of motion (10) with the spring law (9) to their limit cycles over a wide 
range of C( = H / 6 7 t p b ~ )  from a plausible starting guess (g5,,,to). Sample frequency 
versus shear rate data have been obtained by measuring the period of the orbits 
asymptotically so obtained. Graphs of 5 versus $ in the limit cycle for a set of five 
values for the parameter C are given in figure 8. (Similar curves can be found in figure 9 
of Abernathy et al. (1980) for the case p = 0, and for a wider range of C.) All of the 
results presented herein were obtained with fixed values for the other parameters of 
gEQ = 2, Ew = 100, and p = 4. Qualitatively similar behaviour is obtained over 
neighbouring ranges of the parameters EEQ and tw. In general, smaller tEQ implies 
higher frequency, with E,, = 0 (corresponding to a non-deforming sphere) yielding 
the highest possible flipping frequency of K / ~ R .  The motion is not very sensitive to 
the Warner limit of maximum extension, tW, provided that it is set an order of 
magnitude above the equilibrium extension, as it is here. This is because the polymer 
does not have time to expand more than a few diameters during any cycle before 
rotating into regions of the flow (the second and fourth quadrants of figure 4a)  in 
which the fluid aids rather than opposes the contractive tendency of the spring. 

For large values of C, corresponding to low shear rates, the spring length does not 
change appreciably and the polymer rotates nearly like a rigid ellipsoid, in 
proportion to the shear rate, as in (1). A t  intermediate shear rates, the spring 
expands significantly beyond and contracts to slightly within its equilibrium length 
during the course of a cycle. The high-aspect-ratio parts of the cycle slow the rotation 
down, relative to the rigid-body rate based on the equilibrium aspect ratio. For a 
given C of order unity or smaller, the softening parameter p exerts substantial 
control over the excursion of in the limit cycle. As p is increased from zero, the 
polymer can undergo greater and greater expansion at  favourable orientations (the 
fht  and third quadrants of figure 4a) .  It is the susceptibility to expansion (for 
sufficiently large p )  and the concomitant retarding of the rotation (see (lOa)), that 
causes the body actually to rotate less rapidly as the shear rate is increased over this 
range. At very high shear rates (C 4 i) ,  the ability of the polymer to deform 
saturates, and the linear increase of rotation rate with shear rate again prevails. (In 
the laboratory, breakage of the polymers would probably occur before this saturation 
effect would be experimentally observable.) Corresponding to the middle curve of 
figure 8, figure 9 schematically depicts the polymer at its maximum and minimum 
extensions, superposed simultaneously, for C = 5.0. 

There is a transition range of C ,  approximately one order of magnitude in width, 
over which the experimentally observed phenomenon of an absolute decrease in 
fluctuation frequencyf, with increasing shear rate K can be observed. A dimensionless 
plot of this phenomenon is furnished in figure 10. The Hookean parameter H in C 
may be fixed so as to centre this range over the centre of the experimentally 
measurable range of K .  A dimensional graph of the frequency versus shear-rate 
behaviour for a particular value of H/6npb  is given in figure 11. The experimental 
range of a reduction of 50 % in absolute frequency over an increase of 20 'YO in shear 
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FIGURE 8. Limit-cycle plots of extension 5 as a function of inclination q5 for different values of 
C = H / ~ ~ c @ K ,  spanning the domain of nonlinear frequency versus strain-rate response. The solid 
curves are labelled with the values C = 0.5,5.0, and 50. The dashed curves near the extreme values 
are for C = 1.5 and 15, and show how the change in the limit cycle with C saturates at both high 
and low values. 
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FIGURE 9. Orientations of a typical polymer a t  its maximum and minimum extensions, 
superposed, for the caw C = 5.0. 

rate, as displayed in figure 1 is not realized for the particular model and parameters 
considered above, but it does exhibit a 10% absolute frequency reduction over this 
range. Considering the crudeness of the model, it does not appear appropriate to 
attempt to fit precisely a particular set of experiments, such as those presented in 
figure 1 in which a frequency decrease is evident, or figure 2, in which the hquency 
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FIGURE 10. Dimensionless frequency versus C = H/Gnpb~.  The horizontal asymptote at C + cu 
is the rigid-body limit, in which the (dimensional) frequency and strain rate are proportional. 

Strain rate (s-l) 

FIGURE 11.  Frequency versus strain rate for HI6xpb = 6 x lo3 s-l in the vicinity of K = lo3 s-'. 

is virtually stationary with increasing shear. However, the softening of the spring 
and retarding of the rotation provides the potential for creating a range of such 
behaviour . 

Perhaps the greatest of the shortcomings of the present model in its prediction of 
the polymer flipping frequency is the neglect of the hydrodynamic influence of 
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nearest neighbours. Coherence of neighbouring polymers in the streamwise direction 
i s  presumed (without it, the experimental interpretation of the streamwise velocity 
fluctuations is invalid), and since such coherence implies constructive interference, it 
is likely that the effect of nearest neighbours, if it could be properly modelled, would 
be to boost the predicted fluctuation frequencies at all shear rates, relative to those 
of the dilute hybrid model. 

Another objection to the model might be its infinite resistance to bending. Bending 
could be modelled by a simple elastic law with a finite spring constant like that 
proposed for stretching, and the resulting more complicated motion (with another 
degree of freedom and another parameter) numerically integrated using the two- 
sphere interaction results of Kim & Mifflin (1985). However, this extra degree of 
freedom does not seem necessary for the simplest interpretation of the experiments, 
and there is insufficient experimental information to consider fitting a second 
parameter. (Indeed, the simple geometry of the two-sphere dumbbell invites several 
refinements which we have not pursued because the dumbbell is itself merely an 
idealization from which to obtain the deformational behaviour of a typical polymer 
in solution.) Bending would undoubtedly be important for polymers attaining much 
higher aspect ratios, during the parts of their rotations when they are subject to 
compressive deformational forces. 

4. Effective viscosity estimate 
As discussed in the references, experimental evidence has recently been found for 

an increase of the effective viscosity of the polymer solution as the shear rate is 
increased. In figure 8 of Abernathy & He (1984) and a figure forthcoming in 
Abernathy & He (1987), plots of friction factor versus Reynolds number in pipe flow 
show that Virk's asymptote for drag-reduced turbulent flow of a dilute polymer 
solution can also be approached from the laminar side as the shear rate is increased 
past the point where the laminar polymer fluctuations become observable. Such 
shear-thickening behaviour can also be obtained over a range of shear rates with the 
hybrid model proposed above from a crude estimate of the limit-cycle-averaged 
effective viscosity of the suspension. 

Deforming ellipsoidal particles in a dilute suspension influence the effective 
viscosity of the suspension in two ways, which depend on the local shear: 

(i) via a rotational motion, in a manner smilar to that of the well-known case of 
a rigid sphere ; and 

(ii) via a tensile stretching and contraction, which dissipates energy through 
hydrodynamical drag. 

Since the orbit of the deformable polymer depends on the mean flow in which it is 
situated, the effective viscosity of a dilute polymer solution is not an intrinsic 
property of the suspension, but also depends on the mean flow. For the purposes of 
this section, we consider only the simple shear flow, 

for which we have limit-cycle histories of the polymers from which to work. 
The effective viscosity, p ,  of a dilute suspension in which it is assumed that the 

particles do not affect the mean flow 'felt ' by each other, is customarily defined by 
the ratio 
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where ,uo is the viscosity of the pure solvent, 8 is the dissipation of the flow integrated 
over some appropriate reference volume containing a fixed concentration of the 
suspended particles, and Eo is the reference dissipation of the mean flow integrated 
over the same volume. The second equation results from defining El = 8 - E o  as the 
excess dissipation which is due to the rotation and deformation of the particle itself. 
The integration volume may be defined by the finite walls of some apparatus or by 
a sphere at large radius, eventually assumed to go to infinity. 

For extrapolation to other (dilute) concentrations, (12) is often written in the 
form - 

(13) ;o - = 1+r]c, 

where c is the ratio of the volume of the suspended particles V, in the reference 
volume to the total reference volume Vo (i.e. the concentration by volume), and r] is 
the so-called Einstein coefficient, which is for a suspension of rigid spheres. Note 
that r ]  depends only on the shape, and not on the volume of the suspended particles. 
Within the range of sizes admissible in the low-Reynolds-number limit, the volume 
dependence lies only in the factor c. In  order to allow for the possibility of a time- 
dependent volume for the deformable suspended polymers, a generalized form of (13) 
is obtained by writing the instantaneous fractional volume concentration c as the 
product of the constant equilibrium fractional volume concentration cEQ and the 
ratio y of the instantaneous polymer volume to the equilibrium polymer volume. On 
the basis of the ellipsoidal shape of the polymer sketched in figure 5, this ratio might 
be taken to be linear in the extension coordinate 5 :  

Thus (13) becomes 

where the dependencies on the (time-varying) size and shape of the polymers and 
their (fixed) number density are carried in y, r ] ,  and cEQ, respectively. 

The reference dissipation integrated over Vo is simply 

Eo = 2,u0e0,ef5 Vo ,  (15) 

where 2p0e:, is the viscous stress tensor of the mean flow. From (12), (14) and (15), 
we deduce an expression for yr] for the case of a dilute suspension of deformable 
polymers with total equilibrium volume V, in the volume V o :  

In analogy with the number-density-independent factor r] of (13) ,  we refer to 
composite factor yr] of (14) as the Einstein coefficient. Since the motion of the 
polymers is periodic in time t ,  with period T, we may define the time averages 

1 t+T 1 t+T 
( E l )  = - 1 E'(t) dt, (yr]) = T 1 y ( t )  r]( t )  dt .  

T t  t 

Lacking an exact expression for E'(t), we approximate it crudely by the sum of 
separate rotational and deformational terms, E'(t) = Ef,,(t) + Ei,,(t). The rotational 
term will be instantaneously correct for an ellipsoid at  the given aspect ratio and 
inclination in a uniform shear flow in the absence of deformation, and the 



Dynamics of polymers in laminar shear flows 517 

deformational term will be instantaneously correct for the prescribed relative motion 
of the spheres in a quiescent fluid in the absence of rotation. Thus the spirit in which 
E' is approximated is the same as that in which (1) and (6) were combined to form 
the hybrid polymer model, itself. The approximation has the required property that 
it reduces to the rigid-ellipsoid results in the low-shear limit in which the polymer 
undergoes no deformation. 

Jeffery (1922) gives an expression for the dissipation rate due to a rigid ellipsoid 
of aspect ratio r at inclination # in its periodic cycle. By regarding r as a known 
function of time (r( t )  = [ ( t )  + l), where [ ( t )  is given along with # ( t )  from the limit- 
cycle orbits, we may carry this result over to our deforming ellipsoids. To simplify 
the appearance of Jeffery 'a formulae, we define an alternative aspect-ratio parameter 
e(t) by 0 = cos-'(l/r) and four other combinations dependent thereon by: 

log [tan ( ~ + @ ) ]  
sin 0 

F=-[ 1 2-5cosae ] 
4 s1n4 8 C O S ~  8 + 38 ' 

8 =  , 

and 

1 
2 + - - 381, 

Q=-[ 1 
sin48 cos28 

Then the dissipation due to the rotation of the polymer is 

From (ll), (16) and (17) we deduce the rotational dissipation coefficient per unit 
equilibrium volume concentration : 

To estimate the deformational contribution to the dissipation, we first consider the 
instantaneous dissipation rate due to Stokes-Brenner drag on the sphere at one of 
the ends of a rotationless dumbbell in a quiescent flow. For a sphere of radius b at 
the end of the spring, expanding or contracting with an instantaneous velocity V 
along the axis, the dissipation is (Gxbp/?V) V with /? being defined by (7). In terms 
of the dimensionless semi-extension 6, this component of the velocity is given by 
V = Kbg, and there are two such spheres per polymer, so 

(19) EA,,(t) = 2 x 6Xb3p~'/?P. 

Dividing by the same equilibrium ellipsoidal volume used in deriving (18), for 
consistency with (16), we obtain the deformational dissipation coefficient per unit 
equilibrium volume concentration : 
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Figure 12 contains a graph of the cycle-averaged Einstein coefficient versus shear 
rate for the polymer whose frequency data was shown in figure 11. The rotational and 
deformational components are shown separately and their sum is shown in the solid 
curve. Both components increase with increasing shear rate due to the deformation, 
which increases the effective volume of the polymer relative to its low-shear 
undeformed state. 

Also plotted in figure 12 is a second set of the same three curves corresponding to 
the case in which the instantaneous polymer volume is used in the denominators of 
(18) and (20), rather than the equilibrium volume. This second set of curves 
corresponds to the rederivation of (18) and (20) with y = 1, and would be valid for 
a polymer which conserves its volume upon deforming to large aspect ratios, in which 
case (13) may be used in a time-averaged sense without need of the generalization of 
(14). In  the constant-volume case, the cycle-averaged dissipation due to the rotation 
decreases with increasing shear because a larger fraction of the cycle time is spent 
nearly aligned with the mean flow, where the ellipsoid presents less of a cross-section 
to the flow. The total cycle-averaged dissipation does not depart far from the rigid- 
body value (approximately 3.1 for this polymer) over a large range of strain rates, 
because the deformation contribution increases accordingly. The behaviour of a real 
polymer probably lies in between the linear volume-to-aspect ratio behaviour and 
the volume-conserving behaviour shown here. In any intermediate case, the effective 
viscosity exhibits a rise in precisely the neighbourhood of shear-rate parameter space 
where the drop in fluctuation frequency with increasing shear rate is observed. 
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5. A mechanism for local streamwise coherence 
Any model which purports to explain the experimentally observed fluctuations 

should be capable of accounting for the correlation of neighbouring polymers 
executing their rotations in phase. The correlation should be strong in the streamwise 
but weak in the spanwise direction and in the other direction normal to the flow in 
order to account for the experimental findings. The lack of a streamwise correlation 
mechanism was one of the weak points of the model as presented in Abernathy et al. 
(1980). In  that paper, the perturbation velocity field due to the rotational motion of 
a single ellipsoidal polymer was calculated everywhere in space, after Jeffery (1922). 
Examination of the perturbation vorticity field showed that it died off rapidly in r,  
and more significantly, was only weakly orientation dependent. This makes 
hydrodynamic coupling between polymers due to periodic rotational ‘kicks’ a poor 
candidate for the correlation mechanism. In  contrast, the Brenner-Stokes per- 
turbation flow field due to the expanding and contracting motion of the spheres along 
their line of centres is strong and strongly orientation-dependent, since these 
deformations peak at a specific angle. This mechanism (which was not considered in 
Abernathy et al. 1980) periodically sends hydrodynamic signals along rays in the 
plane of rotation. 

The perturbation velocity fields due to the deformational motion of a bead-and- 
spring dumbbell were calculated after Brenner (1961), and one quadrant of the flow 
field in an axial plane showing the near and intermediate field is plotted in figure 
13 (a, b). In  the near field, along the axis of deformation, the perturbation velocity 
falls off like l/r from its maximum a t  the spherical bead itself. In the far field, the 
perturbation looks like a dipole and falls off like l/r2. Despite the strength of the 
deformational signal, there is little opportunity for correlation in the direction 
normal to the mean flow (the y-direction in figure 4a). This is apparent from the size 
of the dimensionless ratio of the distance Az travelled downstream by a polymer 
convected along at elevation Ay relative to the location of a second polymer, during 
the period that the latter undergoes one elongation-contraction cycle : Ax/Ay = 
(~Ay/f,)/Ay = ~ / f ,  2 10. Polymers separated in y spend very little time in one 
another’s domains of hydrodynamic influence. Only polymers separated streamwise 
have constant spatial proximity in a direction of strong hydrodynamic signal 
propagation; hence, only such may be expected to eventually become locked in 
phase. While we have not made calculations of the interactions of the deformational 
perturbation flow fields of two or more polymers, we believe that the correlation 
occurs through this pronounced mechanism. The experimental evidence cited earlier 
is consistent with the deformational correlation mechanism. At sufficiently low 
values of K, the polymers rotate nearly in proportion to K without much deformation 
from their equilibrium aspect ratio, as modelled in figure 11. Experimentally, one 
observes a signal close to white noise, indicating no correlation of these individual 
polymeric rotations, away from the wall in regions where K is small. Only on the 
negative-slope side of the frequency maximum of figure 11, where significant 
deformation occurs, are distinct frequency peaks visible in the sectra. The rotation 
accounts for the periodicity of the deformational velocity perturbation, but is not a 
correlation mechanism itself. 

As described in Abernathy & He (1984, 1987), the experimental r.m.8. of the 
perturbation velocity in which the fluctuations are revealed is on the order of the 
friction velocity u,, which is generally 1 cm s-l or a little greater. An estimate of 
the maximum magnitude of the perturbation velocity due to the deformation of the 
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F’IGURE 13. (a) Velocity streak plot in an axial plane showing the Stokes-Brenner flow due to the 
relative motion of two spheres along their line of centres in a quiescent fluid. (Only one quadrant 
is shown.) (a) Near field; (a) intermediate field. 
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polymers is furnished by max,,[,, T,{(@ + ( [d)2) ibK} .  Note that this is independent of 
the magnitude of the local velocity, with which the centre of mass of the polymer is 
advected along, and depends only on the size of the polymer and the local shear rate. 
In the range of shear rates over which the frequency decreases in figure 11, the 
maximum dimensionless perturbation velocity (@ + ([d)2): over the course of the 
cycle is fairly constant at a value of about 1.8. With a shear rate K of lo3 s-l and a 
fairly generous typical polymer dimension b of 5 ~ 1 0 - ~ c m ,  the maximum 
perturbation velocities that can be expected are approximately lo-' cm s-l. This is 
at least a factor of 10 too low to account for the experimentally observed energy of 
the fluctuations. Like the detailed explanation of the coherence of the polymers, the 
resolution of this disparity in perturbation velocity scales must be left to future 
investigations that consider the simultaneous interactions of a group of neighbouring 
polymers. We hypothesize that it is in the superposition of the perturbation fields of 
many polymers locked in to the same phase that the relatively large r.m.8. 
perturbation velocities are obtained experimentally. 

6. Conclusions 
A single-parameter family of hybrid ellipsoid-dumbbell models for a polymer in 

solution has been introduced, and its behaviour in a shear flow has been investigated 
numerically. The resulting body undergoes periodic rotation and deformation in 
response to the vorticity and strain of the mean flow. This behaviour is proposed to 
account for the recently reported periodic fluctuations in the streamwise component 
of velocity in water-table and pipe flows of dilute polymer solutions, the spectra of 
which are distinct from turbulence. The hybrid model differs substantially from 
bead-and-spring dumbbell models previously introduced to explain shear thinning in 
turbulent shear flows, in that random processes are not invoked. 

Through a strain-rate-dependent stretching deformation which causes the polymer 
aspect ratio to vary by a factor of two or three over the course of one flip, the model 
is capable of reproducing the observed effect of a decrease of fluctuation frequency 
with increasing strain rate over a narrow transition region which can be adjusted via 
a single parameter, a spring constant, to coincide with the experimental range. An 
estimate of the effective viscosity of the dilute polymer solution has been deduced 
from the classical Stokes limits for the dissipation due to a rotating ellipsoid and a 
deforming bead-and-spring dumbbell. This estimate increases with increasing strain 
rate in the transition range, which is in qualitative agreement with the shear 
thickening observed in such laminar flows. 

Inasmuch as polymer-polymer interactions are not considered, the model cannot 
account directly for the correlation of the polymer flipping upon which the 
experimental measurements are based, which is an inherent limitation, and prevents 
detailed prediction of experimental quantities. However, the Stokes-Brenner axial 
stretching mechanism shares the same directional properties as the observed 
correlation, namely strong and intermittent in the streamwise direction and weak in 
the two normal directions. It is expected that no other mechanism for the correlation 
of the flipping of neighbouring polymers would be required in a more complete 
theory. 

The authors gratefully acknowledge the support of the National Science 
Foundation through a grant from the Fluid Mechanics Program (MEA81-21067) and 
for a pre-doctoral fellowship to the first author. The Division of Applied Sciences of 



522 D.  E .  Keyes and P. H .  Abernathy 

Harvard University was the generous host during most of this work. The first author 
also acknowledges the support of the Office of Naval Research (through Contract No. 
N00014-82-K-0184) and the hospitality of the Yale Research Center for Scientific 
Computation during manuscript preparation. 

REFERENCES 

ABERNATHY, F. H., BERTSCHY, J.  R., CHIN, R. W. & KEYES, D. E. 1980 Polymer-induced 
fluctuations in high-strain rate laminar flows. J. Rheol. 24, 647-665. 

ABERNATHY, F. H. & HE, Z.-Y. 1984 Polymer induced velocity fluctuations in dilute drag 
reducing pipe flows. In Proc. Third Intl Conf. on Drag Reduction, University of Bristol, UK (ed. 
J. H. J. Sellin & R. T. Moses), pp. B.8.1-B.8.8. International Association for Hydraulic 
Research. 

ABERNATHY, F. H. & HE, Z.-Y. 1987 Friction Factor, Velocity Profile and Spectrum Meaaurements 
in Drag Reducing Pipe Flows. To be submitted to J. Fluid Mech. 

BIRD, R. B., HASSAQER, O.,  ARMSTRONQ, R.  C. & CURTISS, C. F. 1977 Dynamics of Polymeric 
Liquids, vol. 2. Wiley. 

BRENNER, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. 

BRETHERTON, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. 

JEFFERY, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. 

KIM, S. & MIFFLIN, R. T. 1985 The resistance and mobility functions of two equal spheres in low- 

RUBIN, R. J. & MAZUR, J. 1975 Ordered spans of unrestricted and self-avoiding random-walk 

RUBIN, R. J. & MAZUR, J. 1977 Spans of polymer chains measured with respect to chain-fixed 

RUBIN, R. J., MAZUR, J. & WEISS, G. H. 1976 Spans of polymer chains. Pure Appl. Chem. 46, 

S ~ L C ,  K. 1971 Shape of a random-flight chain. J. Chem. Phys. 55 ,  335-344. 
S ~ L C ,  K. & STOCKMAYER, W. H. 1971 Shape of a random-flight chain. J. Chem. Phys. 54, 

TAYLOR, G. I. 1923 The motion of ellipsoidal particles in a viscous fluid. Proc. R.  Soc. Lond. A 108, 

Chem. Engng Sci. 16, 242-251. 

J .  Fluid Mech. 14, 284-304. 

LO&. A 102, 161-179. 

Reynolds-number flow. Phys. Fluids, 28, 2033-2045. 

models of polymer chains. I. Space-fixed axes. J. Chem. Phys. 63, 5362-5374. 

axes. Macromolecules, 10, 139-149. 

143-148. 

27562757. 

5861. 


